

Natural Infrastructures

What is the issue?

\n\n

In order to avoid risk and damage, and to build resilience to natural disasters, natural infrastructure solutions are increasingly being considered and implemented.

\n\n

Natural Infrastructures:

\n\n

\n

- They are planned and managed **natural or semi-natural systems**, which can provide benefits or even replace a functionality that is traditionally provided by grey infrastructures.
 - ∖n
- These natural or green infrastructures can be areas such as forests, agricultural lands, estuaries, coastal landscapes and wetlands. \n
- These solutions comprises coastal ecosystem (mangroves, coral reefs) for coastline protection from storms; watershed restoration for water quality regulation; afforestation for carbon sequestration; habitat restoration or conservation for pollination; phyto-remediation to rehabilitate contaminated soil and water. \n

\n\n

Do we need a multi-pronged approach?

\n\n

∖n

• At the local level, NI solutions include permeable pavements, trees and rainwater harvesting systems.

∖n

• Vegetative solutions consist of **green roofs, rain gardens, and bio-swales,** which can be used in cities and industrial parks to balance storm water conveyance systems.

\n

- Rain gardens capture rainwater in a depression in the ground, and prevent flash floods and erosion in streams by slowing down storm water. \n
- **Bioswales** are made along roadsides so that rainwater from the road flows towards them and percolates into the ground. \ln
- NI solutions include constructed wetlands that are used for industrial processed water and waste-water treatment, substituting traditional waste-water treatment infrastructure.

∖n

• Oyster reefs and seagrass beds can decrease erosion and protect coastal areas from storms, while also filtering contaminated seawater and supporting local fisheries.

\n\n

What are the benefits?

\n\n

∖n

• A well-managed forest can **regulate water** for drinking, agriculture and energy, store carbon, support pollinators and provide recreational and tourism opportunities.

\n

- Further, it can increase biodiversity and improve storm resilience. $\ensuremath{\sc vn}$
- NI can help avoid water pollution that would otherwise need to pass through a conventional water treatment plant, thus reducing costs. \n
- They often require **less initial capital investment** and reduced operations and maintenance costs. These solutions often require fewer human resources for oversight.

\n

- As more businesses invest in NI solutions, the demand for related skills will increase, resulting in new job opportunities. \n

\n\n

What is the significance?

∖n

\n\n

- We are now working towards achievement of several historic milestones, including the Sustainable Development Goals (SDGs) and the Paris Climate Agreement.
 - \n
- Mapping and assessing NI solutions is essential to ensure that their true values are considered in policies and decision-making across sectors. \n
- Businesses can integrate disaster risk into their management practices as indicated in the recently adopted 'Sendai Framework for Disaster Risk Reduction'.

\n

 Decision-makers increasingly have access to tools and information such as the Natural Capital Protocol, World Bank WAVES programme, and WBCSD Natural Infrastructure for Business platform.

\n\n

What should be done?

\n\n

∖n

- There is a need to strengthen informational cooperation between cities or countries across both the developed and developing worlds.
- Finally, it is imperative to develop and build a **collaborative environment** for public institutions and private companies for the success of these initiatives, as re-imagining ways to integrate nature with the communities will help in building resilience.

\n

\n\n

\nSource: The Hindu

∖n

